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TE and TM Modes in Circularly

Shielded Slot Waveguides
John L. Tsalamengas, Member, IEEE, Ioannis O. Vardiambasis, and John G. Fikioris

Abstract— Cutoff wavenumbers and the field of TE and TM
modes are evaluated in circularly shielded, single- or double-

slot waveguides in case of infinitely thin fins. The formulation,

based on field equivalence principles, is exact and leads to
Carleman-type singular integral or integro-differential equations
for the equivalent surface magnetic cnrrent across the slot(s). The

solution of these equations is based on Neumann’s expansion of

the Hankel kernels and leads to numerically stable and efficient
algorithms regardless of the slot widths. Numerical results for
the cutoff wavenumbers, both TE and TM, are presented. By

lowering the cutoff frequencies of the TE modes and by raising
the corresponding ones of the TM modes considerable increase
in the operating frequency bandwidth may be achieved after

suitably selecting the various geometrical parameters of the
configurations.

I. INTRODUCTION

I N A RECENT publication [1] propagation in circularly

shielded, single- or double-strip lines was investigated.

The dual problems of circularly shielded, single or double

(coplanar) slot-lines with infinitely thin fins are the subject

of the present paper.

Longitudinal slots may be used to implement directional

couplers for exchanging energy between waveguides and, also,

to control the modal properties by lowering or elevating the

cutoff frequencies of several modes (e.g., in ridged waveguides

and fin-lines [2]–[20]).

The conformability of slot- and strip-configurations with

many microwave integrated circuit (MIC) devices has made

the former quite attractive for use in the design of such

devices. For the analysis of such guiding structures a variety

of techniques has been used in the past, the great majority

based on numerical approaches such as moment methods, finite

differences, etc. As noted in [2]–[3] and for reasons extensively

discussed in [1] an exact analytical treatment turns out to be,

in general, quite a formidable task.

The analysis of circularly shielded slot (or strip) lines is

an exception to this rule. The boundary value problem for

such structures can be formulated conveniently in terms of

Carleman-type singular integral or integrodifferential equa-
tions (S.I.E. or S.ID.E.). The kernel of these equations is a

Hankel function @2) (kc ID–-P’ 1), or some combination of such
functions, for which strongly convergent series expansions are

available. These expansions, based on Neumann’s formula for
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the Hankel function [21] lead to very efficient and stable,

recently developed, numerical algorithms [22]–[24] for the

cutoff wavenumbers and the field components, both for narrow

and wide slots (or strips) [1]. A further advantage of this

approach is the fact that, for cylindrical shields, the isolation of

the singular (logarithmic) term of the kernel from its analytic

part leads to simple additional terms in the field expressions;

in contrast, this is not possible with rectangular shields. The .

isolation of the logarithmic term is instrumental in applying

Carleman’s inversion formula for the solution of the S.I.E.

and S.ID.E.

In addition to its analytical convenience, the present and

other related configurations are important from the standpoint

of applications as well. Thus, e.g., they may be used in

building ultra-bandwidth microwave circuit elements (such

as hybrid junctions, directional couplers, and polarization-

selective couplers) as described in [4]. In comparison with

rectangularly shielded slot lines their advantages (in addition to

easy fabrication and compatibility of the dominant mode with

the TEIl circular guide mode) are twofold [5]: (a) they provide

a better control of field polarization, (which may be useful in

a variety of applications involving phase shifters, travelling-

wave isolators, antenna feeds, etc.; (b) due to their better

attenuation characteristics they provide a potential alternative

in the cases where, owing to increasing attenuation, rectangular

fin lines become impractical.

The exp [j(wt – /?z)] time- and z -dependence (/3 being

the propagation constant), assumed for all field quantities, is

suppressed throughout the following analysis.

II. FORMULATION AND SOLUTION OF THE PROPAGATION

PROBLEM IN SHIELDED SLOT WAVEGUIDES

A. TE Modes in Single-Slot Waveguides

The waveguide configuration is shown in Fig. 1. The radius

of the cylindrical shield is denoted by Q whereas the slot of

width 2W may be eccentrically placed at (y = O, h – w <
x < h + w) along the z-axis, h being the eccentricity (this

implies that the following analysis is restricted to infinitely

thin fins). The guide is filled with a homogeneous dielectric

characterized by the scalars (c, V).

Invoking field equivalence principles [25] the boundary

value problem may be most conveniently formulated in terms

of equivalent surface magnetic currents, as illustrated in Fig. 2.

The latter, defined by ~(x) = ~(~, O) x jj, are considered to

act in the absence of the slot (i.e., with the slot short-circuited).
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Fig. 1. llre geometry of an eeeentric single slot-line.
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Fig. 2. ‘I’be equivalent problem.

The magnetic-type Green’s function G~ (P, p’) inside a semi-

cylindrical shield is identified with the longitudinal component

of the magnetic field excited at P(P, ~) due to a magnetic line

source ~a = 2Ma6(j7 – P’) impressed at P’(P’, gY). Using

separation of variables one may find that [26]:

G(izi+) = – ‘M.
4u/1

{

~‘ [Hg)(kclr)+ Hj’)(k.R+)]

co

— 2 ~ Am(a) Jm(kcp’)
‘m=o

}

. Cos (rTzl#/)Jm (kcp) Cos (W@)] ,

Am(a) = GJ&)’(kca)/J&(kca),

Em=2–6mcJ

R+ = ~(fc – z?)’ + (y + y’)>,

~:=~’–p’

(1)

(2)

(3)

kC being the cutoff wavenumber of the propagating mode and

k = W/ZjZ. .

T
Y

Fig. 3. The geometry of a symmetrical coplanar slot-Iine.

Referring to the equivalent problems shown in Fig, 2

and invoking twice the reciprocity theorem: (~., ~) =

(m,~.) (y’ > O), (~.,-~) = (-M, M.) (y’ < O) we
——

are able to obtain:

= sgn (y’)
/

~(z) G~(x, O;x’, y’) dX (4)
c

with C denoting the z-axis interval [h – w, h + w] and

M(x) = Ez (x, O). Application of the continuity condition

for the magnetic field across the slot leads to the following

(Carleman-type) S.I.E.:

,C{C; M($); d}

=—JM(x) Gm(z, O;X’, O) dx = 0;
(7

x’ c c. (5)

Changing variables z = h+ wt, x’ = h+wt’ (–1 < t, t’< 1),

substituting in (5) and using (1) yields:

/

1
M(t) I&)(kcwlt - $1) dt

–1

“/
1

ill(t) Jm[kc(h + wt)] dt = O, It’! <1
–1

(6)

where M(t) = Iv@(t)].

The S.I.E. (6) can be discretized as outlined in [22]-[23].
To this end we first expand M(t) into the following series of

Chebyshev polynomials of the first kind:

co

M(t) =(1 – P)-11’ ~ @jVTN(t),
N=O $

t e [–1,1] (7)
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in compliance with the edge condition. After substituting from

(7) we multiply both sides of (6) by Z’M(t)/(1 – t2)li2 and

integrate from t = – 1 to t = 1. This leads to the linear

algebraic system:

co

x CINRMN(kcW) = 0; M=0,1,2,... (8)

N=O

where:

RMN(kcW) = – j~[KfiN(kCW)

fro(a) = Am(a) sN(m) SM(m);
cc

sN(~) = x ~pI(N, ~) r(~, P);
p=o

N+p=even

r(77t, p) = Jm-p(kch)

+ (–ly’.k+p(kch) (9b)

I(p, q) =
/

1 Tp(t)

_, /mJq(k~wt) dt

{

()J%cw
~J(P+Q)/2 -j-

——

()

I%cw
“ J(q-p)/2 ~ ;

p+ ~ ~v~lo)

o; p + qodd.

The expression

11

H ~M(t) T’(t’)——
-1 -1 /i-=PvT=T2

(11). Hj2)(kcwlt – t’1) dt dt’

which appears in (9a), has been evaluated analytically in

[22]-[23] in terms of a strongly convergent, compact and

numerically stable expression, in which only terms of the form
l(P, q) are involved. To get (8) from (6) use was made, also,

of the expansions:

Jm[kC(h + wt)]

= ; &Jp(kcwt)r(m,p);
p=o

cc

J,(kcwt) = : ~ 6PI(P, q) T,(t). (12)
m p=l)

For symmetrically placed slots (h = O), ~m (a) in (9b) is

reduced to the single term:

fro(a) = 4Am(a) I(N, m) I(M, m). (13)

The series over m in (9a) is, also, strongly (exponentially)

convergent. From (8) by truncation and inversion, the normal-

ized coefficients ~N/@O (~ = 1,2, . . .) may be evaluated if

desired. Also, from the same truncated homogeneous system,

the particular values of k. for which det [RMN] = O provide

the cutoff wavenumbers. The successive truncation sizes M x

M,(M+l)X(M+ l),... lead to sequences of convergent

values for the cutoff wavenumbers.

For a thorough discussion of the efficiency and economy of

the algorithm one may refer to [1], [23]–[24].

B. TE Modes in Double-Slot Waveguides

We now refer to the two-equal-slot configuration of Fig. 3

and denote by M(l) (Z I ) and M(2) (ZZ ) the equivalent surface

magnetic currents on the slots 1 and 2; they satisfy the 2 x 2

system of S.I.E.:

,C{CI; L@(zl); x’}

+ L{C2; M(2)(Z2);2+} = o

(z’ Ec, E[h-w, h+w]

orz’ E C’z a [–h–w, –h+w]). (14)

For (equal and) symmetrically placed slots: ill(l)(z) =

SA4’(2)( –z) = ill(~), with .s = 1 implying codirectional

magnetic currents and s = – 1 contradirectional ones. In this

case the following single S.I.E. may be written as [1]:

/

1
AI(t’) Hj2)(kcwlt – t’1) dt’

–1

. [kC12h + W(t - t“)l] dt”
cc

= ~ L(a) J~(k~(h + wt))
m=i)

“[1

1
M(t’)Jm[kC(h + wt’)] dt’–1

/
1

+s 1&f(-t”)Jm[kC(–h + wt”)] dt” ;

Itr; 1 (15)

where &f(t’) = M[zl (t’)], after changing variables: Z1 =

h+wt’, zz=–h+wt, $’=h+wt(z’ec~).

The procedure outlined in the preceding subsection can be

applied to (15), using for M(t) the expansion (7), with the

help of (12) as well as [1, (16)]. Referring to [1, Section 3]

for more details, the final result is again the infinite set of

equations (8), where now its matrix elements are

cc

+ ;(–l)%~Ek(-l) %k(2kch)
k=o
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Fig. 6. Cutoff wavenumbers versus 2w/afor thedouble slot-line of Fig. 3
and for different d/a values (TE1l and TE21 modes).
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Fig. 7. Cutoff wavenumbers versus w/a for the first five even TM modes
forthesingle slot-line of Fig. 1 (h/a = O).

{

. ~e.I(N,n)
at p’. Using separation ofvariables onemay find that [26]:

m=tl

}

G,(~,~’) = –#l.
. (l(&l, k+n)+(-l)ml(Jf, k-n)) . (16)

{

. [H$)(kcR-) -H~2)(k.R+)]

Finally, we note that for s = O we get the expression (9a) m

for a single slot. – 2~Bm(a)Jm(kcp’)
m=l

C. TM Modes in Single-Slot Waveguides . sin(rr@’)Jm(kcp) sin(rno)
}

(17)

For a propagating TM mode, the equivalent surface mag-
Bm(a) = 2H$)(kCa)/Jm(kCa) (18)

netic current is IV(z) = .2ilfZ(z) + ~~.(~);~.($) =

13X($,0),iWz(S) = –J!3Z(Z,0). The electric-type Green’s

function Ge(~,p’) inside a semi-cylindrical shield isidentified with R+ defined in (3).

with the longitudinal component of the electric field excited at Referring to the equivalent problems of Fig. 2 and using

pduetoan electric line source~. =21.6( P–D’) impressed
——

again twice thereciprocity theorem: (~~, ~) = (iW,.7~) (g’ >
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——
0), (3., –X7) = (–M, .7.) (y’ < O) one gets:

IaEz(z’, y’) = – sgn (y’)%
J L

“/

8
M.(X)Z G.(z, O;Z’, y’) dx. (19)

c

Using (19) and (17) and expressing HZ (a?, y’) in terms of

Ez (z’, y’) yields the following S.ID.E.:

f{c; iw.(z);d}

= (~+kw’Qx)HJ2)
.(kc[z -z’l)dz -: ~ Bin(a)

m=l

. (l(m, /ccZ’)
/

M.(x) @(m, /ccz) dz = O;
c

x’ e c; @(m, 6) = !lm-l(b) + Jm+l(b) (20)

after applying the continuity condition for Hz across the slot.

Changing variables x = h + wt, x’ = h + wt’ (– 1< t,t’<

1)and expanding A4Z(t)= Mm [r(t)]into the following series

of Chebyshev polynomials of the second kind:

M.(t) = J=I’

“2 bNUN (t), t c [–1,1] (21)
N=O

in conformity with the edge condition, the S.ID.E. (20) can be

discretized as outlined in [22]–[23]. To this end, we substitute

from (21) into (20), multiply both its sides by /~U~(t’)

and integrate from t’= – 1 to t’= 1. The final result is the

following linear algebraic system:

? bN&fN(kCW) = O; M=0,1,2,... (22)
N=O

k~jv(k.w)
= [i2fiN(kcw) + ii~N(kcw)]

- (Y)’fj.(a)

cc

~N(m)= E eqJ(IV, q) A(m, q);
(@J

q+ N=even

A(m, q) =1’(m – l,q) + r(m + l,q)

(23)

(24)

5.5 =1

5.0

4.5

4.0
0

3.0

2.5

2.0

TM,,

TMO,

0.4
0.5 Single slot–line

Fig. 8. Cutoff wavenumbers versus w/a for the single slot-line of Fig. 1

and for different h/a values (TMO 1 and TM11 modes).

= ;[I(P, q) - I(p + 2, q)] (25)

with I’(m, n) and l(m, n) defined in (9b), (10). In (23) the

term:

=w@TwMw ‘

“[k:+-j$ u ‘ m.–1
. uN(t) @2)(kcw/t – t’[)dt’ dt (26)

assumes the analytical and, numerically, very efficient and

stable expression given by [23, (25)] and [23, (26)] (see, also,

[1, Appendix B]).

For symmetrically placed slots, (24) assumes the following

much simpler (single term) expression:

g~ (a) = 4B~

. (a){J(N, m - 1)+ J(~, m + 1)}

. {J(A!f, m- 1) + J(Lf, m+ l)}. (27)

By truncation of (22), characteristic equation det [kMN(kcW)] =

O, which provides the cutoff wavenumbers, leads, as before, to

rapidly convergent sequences of values as the truncation size

M x M increases.

D. TM Modes in Double-Slot Waveguides

For equal and symmetrically placed slots, as in Fig. 3, the

case of TM modes can be formulated as in (14) using operator

.f in place of L and with the &components M~l) (zl) =
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Ty Ty

Fig. 9. Geometry of (a) single ridged or (b) double ridged semi-circular
guides.

.sJl~)(x2) = Af(a) of the equivalent surface magnetic current

on the slots replacing M(l) (S1 ) = SLf(z) (Z2) = ill(x) in

(14). Changing variables (x’ = h + wt, xl = h + wt’; xl E

Cl, X2 = –h + wt; X2 ~ 6’2), this system reduces to the

following single S.ID. E.:

(~+(kcw)z )
“[J

1

hf(t’) @2)(kcW/t – t’[) dt’
–1

J
1+s M(–t”).

–1
-!

.—

1j2)[k.[2h + w(t - t)l] dt”j

% ~ ~m(~) @(m,k.(h + wt)).
Tn=l

/

1

kf(t’) @(m, /cc(h + Wt’)) dt’
–1

I.1 1

+s ! 1Al(-t”)@(m, kc(–h + Wt”)) dt” = O.
–1

(28)

Using again the expansion (21) for M(t) and following the

procedure outlined in the preceding single-slot TM-case (see

[1, Section 5] for more details), we arrive at the system (22)

where now:

&fN(kcw) = [xfiN(kcw) + R~N(kcw)]

- (Y)’g,[1- s(-l)m]gm(a)

+ :(–l)~s(kcw)z

cc

~ ~%(-l)%(2kch)
k=O

~ ~ ,nJ(N,n)’

?Z=O

Ty

a2---4

Fig. 10. Geometry of two coupled semicircular guides.

. (D(M, k + n) + (-l)”D(M, k - n))

(29)

~(~, 9) = +[J(M, q - 2) + 2J(ikf, q)

+ J(M, q + 2)] (30)

with J(p, q) defined in (25).

Setting s = O in (29) we obtain (23) for the single slot.

III. NUMERICAL RESULTSAND DISCUSSION

The modes supported by the structures of Figs. 1 and 3 may

roughly be divided [7] into fin-sensitive (TEfin, TMfin) and fin-
empty TMempty modes. The latter include theinsensitive (TE , )

even TEom as well as all odd TE and TM empty circular guide

modes. In the following we will restrict ourselves to the study

of the fin-sensitive modes only.

The normalized cutoff wavenumbers kca for the five con-

secutive, lower order TEfin modes of the symmetrical slot line

of Fig. 1 are shown in Fig. 4 as a (monotonically increasing)

function of the normalized slot width w/a. As seen from these

plots, the cutoff wavenumbers for all modes, as w/a 4 1,

approach with remarkable accuracy the known values for

the corresponding modes in the empty circular guide (dotted

straight lines), providing a first reliability test for our approach.

This justifies the classification of the modes and their charac-

terization as TE~~. In the limit, as w/a -0, they tend to their

corresponding values of a semicircular guide, as expected. An

important exception is the dominant TE11 mode whose cutoff

frequency tends to zero for small values of w/a. This behavior,

which may be used conveniently for lowering the admissible

operating frequencies, is explained in [7]. More specifically,

the limit w/a -+ O maybe approached by either of the follow-

ing two alternatives: (a) keeping a finite and letting w ~ O; in
this case the electric field concentration between fins, causes

an equivalent capacitive loading of the guide, which tends to

lower its cutoff frequency; (b) keeping w finite and letting
a ~ co; in this case the effect of the shield diminishes and

we are left with two semi-infinite fins in the unbounded space,

which support a zero cutoff frequency mode [27].
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Fig. 5 illustrates the possibility to enhance the operating

bandwidth (a(k~l – k~l )) of the circular guide by inserting two

asymmetrically placed fins as in Fig. 1. It is clearly seen that,

by lowering the cutoff wavenumber of the TE1l mode and by

raising the corresponding one of the TE21 mode, an increase up

to 29.3% in bandwidth can be achieved by properly selecting

the eccentricity h/a. The bandwidth may be further increased

by using two coplanar slots, instead of one. In Fig. 6, the

cutoff wavenumbers for the TE1l (or TEM) and TEz1 modes

are shown versus 2w/a for several widths of the two slots.

The solid-line curve, corresponding to the case of two equal

slots of width 2W joined together, is identical, as expected,

to the case of a single slot line of double slot-width 4w. By

properly selecting both slot-width 2W and strip-width 2d an

increase of up to 31.1 YOin bandwidth can be realized. In the

limiting case w = a – h, where the double slot line of Fig.

3 goes over to a simple strip line, the corresponding cutoff

wavenumbers were found in full agreement with those of [1].

In contrast to the TE modes, the cutoff wavenumbers

of the TMfin modes are monotonically decreasing functions

of w/a, as seen from Fig. 7. In the limit, as w/a ~

1, kca again approaches with remarkable accuracy the known

values for the corresponding modes in the empty guide.

Also, contrary to what happens with TE modes, the intro-

duction of symmetrically placed fins causes an increase of

bandwidth (a(k}l – k~l)) of up to 32.2%, as compared

with the constant bandwidth value of the simple circular

waveguide. Using asymmetrically placed fins causes again

an increase in bandwidth, for appropriate combinations of

eccentricity and slot-width (Fig. 8); however, this increase

never reaches the high values that can be achieved with

symmetrical configurations. Therefore, the single centered slot

line is the better TM-configuration as far as large bandwidth

is concerned.

IV. CONCLUSIONS AND GENERALIZATIONS

Efficient singular integral equation techniques have been

used to solve for the propagation properties of circularly

shielded slot lines. By lowering or raising the cutoff wavenum-

bers of several modes (via a change in the position andlor the

width of the slots) an increase of bandwidth can be achieved.

The analysis presented in this paper covers (or may be

readily extended to) a number of related structures. Thus, e.g.,

one may easily verify that those modes supported by either
of the structures of Fig. 1 (for h = O) and Fig. 3, whose

~ andlor 2 components of the electric field vanish along the

x = O plane, are the proper ones that can propagate in the

single or double ridged semi-circular guides shown in’ Figs.

9(a)–(b). In addition, single or double slot coupling between

two semi-circular guides of different radii, al and az, shown

in Fig. 10, can be formulated along the lines outlined above.

In this way we are led to the S.I.E. (6) or (15) and, also, to the

linear algebraic equation (8) (TE-case); in all these equations

as well as in (9) and (16) Am(a) and jn (a) should be simply

replaced by ~ [A~(al) + A~(az)] and ~[f~(al) + f~(az)],

respectively. In the TM-case this procedure leads to the S.ID.E.

(20) or (28) and, also, to the algebraic system (22); in these

equations as well as in (23) and (29) Bn (a) and gm (a) should

be replaced by ~ [Bm(al) +B~(a2)] and ~[%(al) +%(az)],

respectively.
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