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TE and TM Modes in Circularly
Shielded Slot Waveguides
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Abstract— Cutoff wavenumbers and the field of TE and TM
modes are evaluated in circularly shielded, single- or double-
slot waveguides in case of infinitely thin fins. The formulation,
based on field equivalence principles, is exact and leads to
Carleman-type singular integral or integro-differential equations
for the equivalent surface magnetic current across the slot(s). The
solution of these equations is based on Neumann’s expansion of
the Hankel kernels and leads to numerically stable and efficient
algorithms regardless of the slot widths. Numerical results for
the cutoff wavenumbers, both TE and TM, are presented. By
lowering the cutoff frequencies of the TE modes and by raising
the corresponding ones of the TM modes considerable increase
in the operating frequency bandwidth may be achieved after
snitably selecting the various geometrical parameters of the
configurations.

I. INTRODUCTION

N A RECENT publication [1] propagation in circularly

shielded, single- or double-strip lines was investigated.
The dual problems of circularly shielded, single or double
(coplanar) slot-lines with infinitely thin fins are the subject
of the present paper.

Longitudinal slots may be used to implement directional
couplers for exchanging energy between waveguides and, also,
to control the modal properties by lowering or elevating the
cutoff frequencies of several modes (e.g., in ridged waveguides
and fin-lines {2]-{20}). ‘

The conformability: of slot- and strip-configurations with
many microwave integrated circuit (MIC) devices has made
the former quite attractive for use in the design of such
devices. For the analysis of such guiding structures a variety
of techniques has been used in the past, the great majority
based on numerical approaches such as moment methods, finite
differences, etc. As noted in [2]-[3] and for reasons extensively
discussed in [1] an exact analytical treatment turns out to be,
in general, quite a formidable task.

The analysis of circularly shielded slot (or strip) lines is
an exception to this rule. The boundary value problem for
such structures can be formulated conveniently in terms of
Carleman-type singular integral or integrodifferential equa-
tions (S.LLE. or S.ID.E.). The kernel of these equations is a
Hankel function H, éz) (ke[p—7'|), or some combination of such
functions, for which strongly convergent series expansions are
available. These expansions, based on Neumann’s formula for
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the Hankel function [21] lead to very efficient and stable,
recently developed, numerical algorithms [22]-{24] for the
cutoff wavenumbers and the field components, both for narrow
and wide slots (or strips) [1]. A further advantage of this
approach is the fact that, for cylindrical shields, the isolation of
the singular (logarithmic) term of the kernel from its analytic
part leads to simple additional terms in the field expressions;
in contrast, this is not possible with rectangular shields. The
isolation of the logarithmic term is instrumental in applying
Carleman’s inversion formula for the solution of the S.LE.
and S.ID.E.

In addition to its analytical convenience, the present and
other related configurations are important from the standpoint
of applications as well. Thus, e.g., they may be used in
building ultra-bandwidth microwave circuit elements (such
as hybrid junctions, directional couplers, and polarization-
selective couplers) as described in [4]. In comparison with
rectangularly shielded slot lines their advantages (in addition to
easy fabrication and compatibility of the dominant mode with
the TE1; circular guide mode) are twofold [5]: (a) they provide
a better control of field polarization, (which may be useful in
a variety of applications involving phase shifters, travelling-
wave isolators, antenna feeds, etc.; (b) due to their better
attenuation characteristics they provide a potential alternative
in the cases where, owing to increasing attenuation, rectangular
fin lines become impractical.

The exp [j(wt — (z)] time- and z -dependence (( being
the propagation constant), assumed for all field quantities, is
suppressed throughout the following analysis.

II. FORMULATION AND SOLUTION OF THE PROPAGATION
PROBLEM IN SHIELDED SLOT WAVEGUIDES

A. TE Modes in Single-Slot Waveguides

The waveguide configuration is shown in Fig. 1. The radius
of the cylindrical shield is denoted by a whereas the slot of
width 2w may be eccentrically placed at (y = 0,h — w <
z < h + w) along the z-axis, h being the eccentricity (this
implies that the following analysis is restricted to infinitely
thin fins). The guide is filled with a homogeneous dielectric
characterized by the scalars (e, u).

Invoking field equivalence principles [25} the boundary
value problem may be most conveniently formulated in terms
of equivalent surface magnetic currents, as illustrated in Fig. 2.
The latter, defined by M(z) = E(z,0) x , are considered to
act in the absence of the slot (i.e., with the slot short-circuited).
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Fig. 1. The geometry of an eccentric single slot-line.
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The magnetic-type Green’s function G,,(p,p’) inside a semi-

cylindrical shield is identified with the longitudinal component
of the magnetic field excited at p{p, #) due to a magnetic line
source M, = 2M,8(p — p') impressed at p'(p’,#’'). Using
separation of variables one may find that [26]:
Gm(0,0) = ke M,
m(P:P) = dop ®

.{w9w£ﬂ+ﬂﬁwmﬂ1

=2 An(a) Im(kep)

m=0

- cos (me')Jm(kep) cos (m¢)]}, 1)

Am(a) = emHD (kea) /T, (kea),

€m =2 — 6mo (2
ot R
k2 =k - p° 3

k. being the cutoff wavenumber of the propagating mode and’

k = wy/ep. .

Fig. 3. The geometry of a symmetrical coplanar slot-line.

Referring to the equivalent problems shown in Fig. 2
and invoking twice the reciprocity theorem: (M,, M) =

(M,M,)(y' > 0),(M,,-M) = (-M,M,)(y < 0) we
are able to obtain:
MaHz(xlayl) )
= sgn y)/M(w m(z,0;2' 9y Ydz  (4)

with C denoting the z-axis interval [h — w,h + w] and
M(z) = E,(z,0). Application of the continuity condition
for the magnetic field across the slot leads to the following
(Carleman-type) S.LE.:

- L{C; M(z);z"}
/M(x
=

Changing variables z = h+wt, 2’ = h+wt' (-1 < ¢,¢' <1),
substituting in (5) and using (1) yields:

(2,052 O)d =0;
c. )

1
/ M) B (kowlt - ¢/) dt
-1 . .

— Y An(a) Tlke(h + wt')]
m=0
1 <1

(©)

M(t) T [ke(h + wt)] dt = 0,

where M(t) = Mz(t)].

The S.LE. (6) can be discretized as outlined in [22]-[23].
To this end we first expand M (¢) into the following series of |
Chebyshev polynomials of the first kind:

2)=1/2 i anTn(t),
' N=0 £
te[-1,1] )]

M) =(1-1
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in compliance with the edge condition. After substituting from
(7) we multiply both sides of (6) by Tas(t)/(1 — t*)/? and
integrate from ¢ = —1 to ¢ = 1. This leads to the linear
algebraic system:

Z OéNRMN(k‘C’LU) = O;

M:0a1’2a"' (8)
N=0
where:
2
Run (kew) = — ];[KMN(kcw)
1 o]
+ Ky (kew)] - ZMZ: fm(a) (92)
fm(a) = Am(a) Sn(m) Sp(m);
Sn(m)= > &I(N,p)T(m,p);
N+I;210even
F(map) = Jm—p(kch)
+ (_1)me+p(kch) (9b)
0
I(p,q) = P J, (k.wt)dt
(,9) /_1 V-2 g(kcwt)
kow
Tora)/2| 5
= kow 10
.J(q_p)/g (T)’ p+qeve£1 )
0; p+ godd.
The expression
2
—i =K (kew) + Ky (kew)]
/ / m(t) Tn(t)
V1—124/1—-¢2
c HP (kewlt — ') dt dt’ (11)

which appears in (9a), has been evaluated analytically in
[22}-{23} in terms of a strongly convergent, compact and
numerically stable expression, in which only terms of the form
I(p,q) are involved. To get (8) from (6) use was made, also,
of the expansions:

I [ke(h + wt)]

oo

%Z%Jp

p=0

(kcwt) T'(m, p);

Tolkewt) = = 3" e, 1(p,0) Ty(t). (12)
p=0

For symmetrically placed slots (A = 0), f,,(a) in (9b) is
reduced to the single term:

fm(a) =44, (a) I(N,m) I(M,m). (13)

The series over m in (9a) is, also, strongly (exponentially)
convergent. From (8) by truncation and inversion, the normal-
ized coefficients an/ao (N = 1,2,---) may be evaluated if

desired. Also, from the same truncated homogeneous system,
the particular values of k. for which det [Rasn] = 0 provide
the cutoff wavenumbers. The successive truncation sizes M X
M,(M +1) x (M +1),--- lead to sequences of convergent
values for the cutoff wavenumbers.

For a thorough discussion of the efficiency and economy of
the algorithm one may refer to [1], [23]-[24].

B. TE Modes in Double-Slot Waveguides

We now refer to the two-equal-slot configuration of Fig. 3
and denote by MM (1) and M) (z,) the equivalent surface
magnetic currents on the slots 1 and 2; they satisfy the 2 x 2
system of S.LE.:

ﬁ{Cl;M(l)(xl);x’}
+ L{Cy; MP(z5);2"} =0
(#' € C1 =[h—w,h+ w]

orz’ € Cy =[-h—w,~h+w)]). 14)

For (equal and) symmetrically placed slots: MM (x)
sM®(—z) = M(x), with s = 1 implying codirectional

magnetic currents and s = —1 contradirectional ones. In this
case the following single S.I.E. may be written as [1]:

1
/ M) HE (kowlt — ]) d#’
-1

1
+s / M(—t") H?
-1

[kel2h o+ (e = )] de”
Z A (@) T (ke(h + wt))
{ / M(t') T ko(h + wt')] d#'

s / M(=t") o [ho(—h + wt")] dt" |
1

t<1 (15)
where M(t') = M|z1(t')], after changing variables: z; =
h+wt',zo = —h +wt, 2’ = h+ wt(z' € Cy).

The procedure outlined in the preceding subsection can be
applied to (15), using for M(t) the expansion (7), with the
help of (12) as well as [1, (16)]. Referring to [1, Section 3]
for more details, the final result is again the infinite set of
equations (8), where now its matrix elements are

RMN(ka)
. 2 8 T
= —J—[KMN(kcw) + Ky (kew)

i Z 1+ s(—=1)™]fm(a)
+ %(*1)%;6’“(—1)'“ Hy(2kch)
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Fig. 4. Cutoff wavenumbers versus w/a of the first five even TE modes for
the symmetrical single slot-line of Fig. 1 (h = 0). :
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Fig. 5. Cutoff wavenumbers versus w/a for the single slot-line of Fig. 1
and for different 2 /a values (TE1; and TE21 modes).

. {Z enl(N,n)
n=0

. (I(M,vk +n)+ (~1)" I(M, k — n)) } (16)

Finally, we note that for s = 0 we get the expressidn (9a)
for a single slot.

C. TM Modes in Single-Slot Waveguides

For a propagating TM mode, the equivalent surface mag-
netic current is M(z) = 2M,(z) + £M,(z); M,(z) =
E,(2,0), M,(z) = —E,(z,0). The electric-type Green’s
function G.(p,p') inside a semi-cylindrical shield is identified
with the longitudinal component of the electric field excited at
7 due to an electric line source J, = 2I,6(p — p’) impressed
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Fig. 6. Cutoff wavenumbers versus 2w/a for the double slot-line of Fig. 3
and for different d/a values (TEi; and TE2; modes).
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Fig. 7. Cutoff wavenumbers versus w/a for the first five'even TM modes
for the single slot-line of Fig. 1 (h/a = 0).
at p’. Using separation of variables one may find that [26]:
2
4we

. {[Hé2)(kCR_) — B (k.R")]

Ge(p,7') =

a

o :

=23 Bun(a) Jm(ker)

m=1
- sin (m@)Jp(kep) sin (m¢)} 17)

B (a) - 2HD (k.a)/ Jm(kca) (18)

with R* defined in (3). _
Referring to the equivalent problems of Fig. 2 and using
again twice the reciprocity theorem: (J,, M) = (M, J.) (¥ >
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0)7<Jau_M> = <“H’7a> (y/ < 0) one gets:

IaEz(x,ay,) = —sgn (y ) kz

/M(:v

Using (19) and (17) and expressing H,(z',y’) in terms of
E.(z',y') yields the following S.ID.E.:

(x,0;2',9 ) dz. (19)

£{C; My(z); 2’}
( ddz + k2> / M, (2)H

dz — Zc mzz:le(a)

. @(m, kcx’)/ M, (z) ©(m, k.z) dz = 0;

(el — 2)

after applying the continuity condition for H, across the slot.

Changing variables z = h+ wit,z’ = h+wt' (-1 < ¢, ¢ <
1) and expanding M, () = M,[z(¢)] into the following series
of Chebyshev polynomials of the second kind:

=V1-¢
) byUn(t)

N=0

M (t) =

te[-1,11 @1

in conformity with the edge condition, the S.ID.E. (20) can be
discretized as outlined in [22]-[23]. To this end, we substitute
from (21) into (20), multiply both its sides by /1 — ¢2Up (¢')
and integrate from ¢’ = —1 to ¢ = 1. The final result is the
following linear algebraic system:

i by Basn (kew) = 0; M:o,l,z,m(zz)
R (k)
= K3 n(kew) + Ky (kow)]
() %
{7 ) 2 9m@ (23)
m=1
gm(a) = Bm(a) Sn(m) Spr(m);
Sn(m)= Y eJ(N,q) A(m,q);
. q—}-](\lfz?even
A(m,q) =T(m —1,¢) + T(m +1,q) (24)
J(p,q) = / VI=BU, () J,(kewt) dt
-1

5.5 3
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Fig. 8. Cutoff wavenumbers versus w/a for the single slot-line of Fig. 1
and for different h/a values (TMp; and TMy; modes).

= 3 [1(p,q) (3)

~I(p+2,9)]

with T'(m,n) and I(m,n) defined in (9b), (10). In (23) the
term:

L Ry hew) + R (o)
= w/_ll V1= 12U ()
[iegf] e

w2 dt’2
Un(®) B (kowlt — ¢']) dt’ dt (26)

assumes the analytical and, numerically, very efficient and
stable expression given by [23, (25)] and [23, (26)] (see, also,
[1, Appendix B]).

For symmetrically placed slots, (24) assumes the following
much simpler (single term) expression:

= 4B,
(@){J(N,m —1) + J(N,m + 1)}
A{I(M,m - 1) + J(M,m + 1)}.

gm(a)
27

By truncation of (22), characteristic equation det [Rsn (k.w)] =
0, which provides the cutoff wavenumbers, leads, as before, to
rapidly convergent sequences of values as the truncation size
M x M increases.

D. TM Modes in Double-Slot Waveguides

For equal and symmetrically placed slots, as in Fig. 3, the
case of TM modes can be formulated as in (14) using operator
£ in place of £ and with the #-components Mg(;l)(:cl) =
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Fig. 9. Geometry of: .(a) single ridged or (b) double ridged semi-circular
guides.

sM£2>(x2) = M(z) of the equivalent surface magnetic current
on the slots replacing MM (z1) = sM®(z3) = M(z) in
(14). Changing variables (z' = h + wi,z1 = h + wt’;z1 €
Ci,z9 = —h + wl;zy € Cy), this system reduces to the
following single S.ID.E.:

(g; + (kcw)2)

[/ M) H® (kowlt — t')) dt’

+ s/_lM(—t”).

: Héz) [ko|2h + w(t — )]] dt“]

. [ /_ M) O(m, b (h + i) de

a) ©(m, ko(h + wt)).

1
+ s/ M(-t") @(m,kc(—h-l-wt”))dt”] =0
_1 :
(28)

Using again the expansion (21) for M(t) and following the
procedure outlined in the preceding single-slot TM-case (see
[1; Section 5] for more details), we arrive at the system (22)
where now: :

RMN(kcw) [KMN(k w) + KMN(k w)]

- () Zu-wen

m=1
2 (1) Vs(hew)?

ST er(—1)* Hi(2kch)

k=0

> end(N,n)

n=0

"gm(a)

971

Fig. 10. Geometry of two coupled semicircular guides.

- (DOM 4 m) + (~1)"D(M, k ~ n)

| (9)

= {7 (M,q - 2) +2(M, ) |
+ J(M,q+2)]

D(M, q)
- (30)

with J(p,q) defined in- (25).
Setting s = 0 in (29) we obtain (23) for the single slot.

III. NUMERICAL RESULTS AND DISCUSSION

The modes supported by the structures of Figs. 1 and 3 may
roughly be divided [7] into fin-sensitive (TE®®, TMf®) and fin-
insensitive (TE®™P%, TM®™P%) modes. The latter include the
even TEg,, as well as all odd TE and TM empty circular guide
modes. In the following we will restrict ourselves to the study
of the fin-sensitive modes only. :

The normalized cutoff wavenumbers k.a for the five con-
secutive, lower order TER® modes of the symmetrical slot line
of Fig. 1 are shown in Fig. 4 as a (monotonically increasing)
function of the normalized slot width w/a. As seen from these
plots, the cutoff wavenumbers for all modes, as w/a — 1,
approach with remarkable accuracy the known values for
the corresponding modes in the empty circular guide (dotted
straight lines), providing a first reliability test for our approach.
This justifies the classification of the modes and their charac-
terization as TEm,. In the limit, as w/a — 0, they tend to their
corresponding values of a semicircular guide, as expected. An
important exception is the dominant TE;; mode whose cutoff
frequency tends to zero for small values of w/a. This behavior,
which may be used conveniently for lowering the admissible
operating frequencies, is explained in {7). More specifically,
the limit w/a — 0 may be approached by elther of the follow-
ing two alternatives: (a) keeping a finite and letting w — 0; in
this case the electric field concentration between fins, causes
an equivalent capacitive loading of the guide, which tends t0
lower its cutoff frequency; (b) keeping w finite and letting
a —- oo; in this case the effect of the shield diminishes and
we are left with two semi-infinite fins in the unbounded space,
which support a zero cutoff frequency mode [27]. -
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Fig. 5 illustrates the possibility to enhance the operating
bandwidth (a(k2* —kL')) of the circular guide by inserting two
asymmetrically placed fins as in Fig. 1. It is clearly seen that,
by lowering the cutoff wavenumber of the TE;; mode and by
raising the corresponding one of the TEo; mode, an increase up
to 29.3% in bandwidth can be achieved by properly selecting
the eccentricity h/a. The bandwidth may be further increased
by using two coplanar slots, instead of one. In Fig. 6, the
cutoff wavenumbers for the TE;; (or TEM) and TE2; modes
are shown versus 2w/a for several widths of the two slots.
The solid-line curve, corresponding to the case of two equal
slots of width 2w joined together, is identical, as expected,
to the case of a single slot line of double slot-width 4w. By
properly selecting both slot-width 2w and strip-width 2d an
increase of up to 31.1% in bandwidth can be realized. In the
limiting case w = a — h, where the double slot line of Fig.
3 goes over to a simple strip line, the corresponding cutoff
wavenumbers were found in full agreement with those of [1].

In contrast to the TE modes, the cutoff wavenumbers
of the TMf® modes are monotonically decreasing functions
of w/a, as seen from Fig. 7. In the limit, as w/a —
1, k.a again approaches with remarkable accuracy the known
values for the corresponding modes in the empty guide.
Also, contrary to what happens with TE modes, the intro-
duction of symmetrically placed fins causes an increase of
bandwidth (a(kl! — k%1)) of up to 32.2%, as compared
with the constant bandwidth value of the simple circular
waveguide. Using asymmetrically placed fins causes again
an increase in bandwidth, for appropriate combinations of
eccentricity and slot-width (Fig. 8); however, this increase
never reaches the high values that can be achieved with
symmetrical configurations. Therefore, the single centered slot
line is the better TM-configuration as far as large bandwidth
is concerned.

IV. CONCLUSIONS AND GENERALIZATIONS

Efficient singular integral equation techniques have been
used to solve for the propagation properties of circularly
shielded slot lines. By lowering or raising the cutoff wavenum-
bers of several modes (via a change in the position and/or the
width of the slots) an increase of bandwidth can be achieved.

The analysis presented in this paper covers (or may be
readily extended to) a number of related structures. Thus, e.g.,
one may casily verify that those modes supported by either
of the structures of Fig. 1 (for h = 0) and Fig. 3, whose
p and/or 2 components of the electric field vanish along the
x = 0 plane, are the proper ones that can propagate in the
single or double ridged semi-circular guides shown in Figs.
9(a)—~(b). In addition, single or double slot coupling between
two semi-circular guides of different radii, a1 and a2, shown
in Fig. 10, can be formulated along the lines outlined above.
In this way we are led to the S.ILE. (6) or (15) and, also, to the
linear algebraic equation (8) (TE-case); in all these equations
as well as in (9) and (16) A,,(a) and f,,,(a) should be simply
replaced by §[Am(a1) + Am(a2)] and 3[fm(a1) + fin(a2)]
respectively. In the TM-case this procedure leads to the S.ID.E.
(20) or (28) and, also, to the algebraic system (22); in these

equations as well as in (23) and (29) B,,.(a) and g, (a) should
be replaced by 2[Bom(a1)+ B (a2)] and 3[gm(a1)+gm(a2)],
respectively.
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